Datum/Zeit
Do, 3. Dezember 2020–Fr, 4. Dezember 2020
Uhrzeit: 9:00–17:00
Ort
Schulungszentrum ptm-Akademie, München
Englisch
Beschreibung
Das Themenfeld Machine Learning lässt sich in Klassifikations- und Regressionsprobleme unterteilen, die entweder überwachter oder unüberwachter Natur sein können. In diesem Training lernen sie die unterschiedlichen Problemklassen mit den bedeutendsten Methoden des Machine Learning zu lösen.
Zunächst lernen Sie Machine Learning Verfahren für überwachte Klassifikations- und Regressionsszenarien einzusetzen. Jedes der besprochenen Verfahren wird in dem Training zunächst theoretisch eingeleitet, anschließend in Python umgesetzt und schließlich in einer kleinen Übung durch die Teilnehmer ausprobiert. Inhaltliche Fragestellungen, die aufgrund von Beispieldatensätzen formuliert werden, dienen dem Kurs als roter Faden durch die Verfahren. Neben den Algorithmen versucht das Training einen Eindruck von Machine Learning Prozessen zu vermitteln. D.h., es wird aufgezeigt, welche Schritte notwendig sind, um einen Machine Learning Task zu lösen und wie diese konkret umgesetzt werden.
Anschließend werden nicht überwachte Szenarien besprochen. Zu diesem Zählen insbesondere Clusteranalysen und die Hauptkomponentenanalyse. Beide Verfahrensklassen dienen der Dimensionsreduktion und werden häufig in Interaktion mit überwachten Lernmethoden eingesetzt. Wie die Verfahren miteinander kombiniert werden und welche Herausforderungen dabei bestehen, erfahren Sie im Kurs.
Wer sollte teilnehmen?
Data Scientist, Datenanalysten, Statistiker, Mathematiker, Researcher
Grundlegende Programmiererfahrung in Python sollte vorhanden sein.
Lernziele
- Kennenlernen der Verfahrensklassen und ausgewählter Methoden im Bereich ML
- Einführung in den Entwicklungsprozess von Machine Learning Tasks
- Einführung in grundlegenden Techniken des Machine Learning mit Python
- Eigene Machine Learning Modelle mit Python erstellen und evaluieren
Inhalte
- Grundlagen des Machine Learnings / Data Minings
- Überblick über Modelle und Methoden, Über das Problem der Prognose
- Supervised vs. Unsupervised Learning
- Overfitting, Underfitting und Parametertuning – Techniken der Modellerstellung
- Grundproblem, einfache Kreuzvalidierung, 3 Fold-Technik, k-Fold-Validierung
- Klassifikationsverfahren
- Entscheidungsbäume, Random Forest, Gradient Boosting Machines, Neuronale Netze
- Evaluation von Klassifikationsverfahren (ROC-Kurven, Cutoff-Wert, Präzision, Sensitivität, Spezifität)
- Regressionsprobleme
- Lineare Regression, Regression Trees, Random Forest, Neuronale Netze, regularisierte Regressionen (Ridge Regression, Lasso Regression, Elastic Net)
- Evaluation von Regressionsproblemen
- Clusteranalysen
- k-Nearest Neighbors, k-Means, agglomerative Clusteranalyse, DBSCAN
- Hauptkomponentenanalyse
- Grundbegriffe und Anwendungsszenarien, Ausblick auf Rotationsverfahren, Kriterien zur Dimensionsreduktion, Interpretation
Shortfacts
- Preis: 1.400,- € zzgl. MwSt.
- Dauer: 2 Tage
- 2–10 Teilnehmer
- Kurssprache: Englisch
- Training am eigenen Laptop
Was Sie erwartet
- Teilnehmerzertifikat
- Umfassende Schulungsunterlagen
- Verpflegung mit Mittagessen, Snacks und Getränken
- Top ausgestattete Schulungsräume
- Angenehme Lernatmosphäre durch kleine Gruppen und aufgelockerte Inhalte
- Hands-On-Training: Praxisorientiert mit anschaulichen Beispieldaten und kleinen Übungen
Buchung
Training bei Data-Science-Architect
- Erhalt der Buchungsbestätigung
- Anfahrtsplan + Hotelempfehlungen
- Ich frage im Vorfeld alle Teilnehmenden nach Ihrer Erwartung an das Training. Wenn Sie möchten, können Sie mir im Vorfeld dazu Feedback geben.
- Sie erhalten 4 Wochen vor dem Training: Ankündigung mit Kursbeschreibung, Softwarevoraussetzung, Installationsanleitung, Timetable & optionaler Möglichkeit zur Vorbereitung
- Sie erhalten 1 Woche vor der Training die im Kurs verwendeten Materialien wie Skripte und Datensätze.
- Pro Tag 8×45 Min. Lerneinheiten
- 30 Min. Open Space pro Tag im Anschluss an die Lerneinheiten
- An das Kursthema angepasstes Verhältnis von Theorie, Praxis und Übungsphasen
- Event Evaluation
- Bereitstellung der im Training erstellten Materialien
Buchungsdetails
- Der 3. Teilnehmer einer Anmeldung nimmt kostenfrei teil
- Rechnungsstellung erfolgt nach der Veranstaltung
Der Schulungsort München
München hat viel zu bieten: Machine Learning, objektorientierte Programmierung, Python, R und natürlich den Stachus, die Frauenkirche oder die Allianz Arena. Die Trainings finden in der Arnulfstraße statt – unweit der Innenstadt und einigen guten Brauhäusern.