Machine Learning mit R

Datum/Zeit
Do, 20. Februar 2020–Fr, 21. Februar 2020
Uhrzeit: 9:00–17:00

Ort
Hamburger Business Center, Hamburg

Kategorie
Sprache
Deutsch

Beschreibung

Das Themenfeld Machine Learning lässt sich in Klassifikations- und Regressionsprobleme unterteilen, die entweder überwachter oder unüberwachter Natur sein können. In diesem Training lernen Sie die unterschiedlichen Problemklassen mit den bedeutendsten Methoden des Machine Learning zu lösen.

Erfahren Sie zunächst, wie Sie Machine Learning Verfahren für überwachte Klassifikations- und Regressionsszenarien einsetzen. Jedes der besprochenen Verfahren wird in dem Training zunächst theoretisch eingeleitet, anschließend in R umgesetzt und schließlich in einer kleinen Übung durch die Teilnehmer ausprobiert. Inhaltliche Fragestellungen, die aufgrund von Beispieldatensätzen formuliert werden, dienen dem Kurs als roter Faden durch die Verfahren. Neben den Algorithmen versucht das Training einen Eindruck von Machine Learning Prozessen zu vermitteln. D.h., es wird aufgezeigt, welche Schritte notwendig sind, um einen Machine Learning Task zu lösen und wie diese konkret umgesetzt werden.

Anschließend werden nicht überwachte Szenarien besprochen. Zu diesen Zählen insbesondere Clusteranalysen und die Hauptkomponentenanalyse. Beide Verfahrensklassen dienen der Dimensionsreduktion und werden häufig in Interaktion mit überwachten Lernmethoden eingesetzt. Wie die Verfahren miteinander kombiniert werden und welche Herausforderungen dabei bestehen, erfahren Sie im Kurs.

Wer sollte teilnehmen?

Data-Scientist, Datenanalysten, Statistiker, Mathematiker, Researcher

Dieser Kurs richtet sich an Personen, die an dem Themenfeld „Machine Learning“ interessiert sind oder ihre Kenntnisse in diesem Bereich erweitern möchten. Vorkenntnisse in R sind Voraussetzung einer produktiven Teilnahme. D.h. die Grunddatentypen und syntaktische Strukturen sind bekannt.

Lernziele

  • Kennenlernen der Verfahrensklassen und ausgewählter Methoden im Bereich ML
  • Einführung in den Entwicklungsprozess von Machine Learning Tasks
  • Einführung in grundlegenden Techniken des Machine Learning mit R
  • Eigene Machine Learning Modelle mit R erstellen und evaluieren

Inhalte

  • Grundlagen des Machine Learning
    • Überblick über Modelle und Methoden, Über das Problem der Prognose
    • Supervised vs. Unsupervised Learning
  • Overfitting, Underfitting und Parametertuning – Techniken der Modellerstellung
    • Grundproblem, einfache Kreuzvalidierung, 3 Fold-Technik, k-Fold-Validierung
  • Klassifikationsverfahren
    • Entscheidungsbäume, Random Forest, Gradient Boosting Machines, Neuronale Netze
    • Evaluation von Klassifikationsverfahren (ROC-Kurven, Cutoff-Wert, Präzision, Sensitivität, Spezifität)
  • Regressionsprobleme
    • Lineare Regression, Regression Trees,  Random Forest, Neuronale Netze, regularisierte Regressionen (Ridge Regression, Lasso Regression, Elastic Net)
    • Evaluation von Regressionsproblemen
  • Clusteranalysen
    • k-Nearest Neighbors, k-Means, Agglomerative Clusteranalyse, DBSCAN
  • Hauptkomponentenanalyse
    • Grundbegriffe und Anwendungsszenarien, Rotationsverfahren, Kriterien zur Dimensionsreduktion, Interpretation

Shortfacts

  • Preis: 1.400,- € zzgl. MwSt.
  • Dauer: 2 Tage
  • 2–10 Teilnehmer
  • Kurssprache: Deutsch
  • Training am eigenen Laptop

Was Sie erwartet

  • Teilnehmerzertifikat
  • Umfassende Schulungsunterlagen
  • Verpflegung mit Mittagessen, Snacks und Getränken
  • Top ausgestattete Schulungsräume
  • Angenehme Lernatmosphäre durch kleine Gruppen und aufgelockerte Inhalte
  • Hands-On-Training: Praxisorientiert mit anschaulichen Beispieldaten und kleinen Übungen

Training bei Data-Science-Architect

Buchung

  • Erhalt der Buchungsbestätigung
  • Anfahrtsplan + Hotelempfehlungen
  • Ich frage im Vorfeld alle Teilnehmenden nach Ihrer Erwartung an das Training. Wenn Sie möchten, können Sie mir im Vorfeld dazu Feedback geben.
  • Ankündigung mit Kursbeschreibung, Softwarevoraussetzung, Installationsanleitung, Timetable & optionaler Möglichkeit zur Vorbereitung
  • Bereitstellung der Kursmaterialien
  • Pro Tag 8×45 Min. Lerneinheiten
  • 30 Min. Open Space pro Tag im Anschluss an die Lerneinheiten
  • An das Kursthema angepasstes Verhältnis von Theorie, Praxis und Übungsphasen
  • Event Evaluation
  • Bereitstellung der im Training erstellten Materialien

Buchung

  • Der 3. Teilnehmer einer Anmeldung nimmt kostenfrei teil
  • Rechnungsstellung erfolgt nach der Veranstaltung

Der Schulungsort Hamburg

Hamburg

Morgens Fisch, Mittags Python, Abends R – die Trainings im hohen Norden finden im Hamburger Business Center statt – 2 Haltestellen von der Hafencity entfernt. Besuchen Sie am Abend die Elbphilharmonie oder gehen Sie an der Alster spazieren!