Python in Operativumgebungen

Beschreibung

Mit dem Training Python in Operativumgebungen lernen Sie, wie Python „State-of-the-Art“ in Softwareprojekten eingesetzt wird. Erfahren Sie dabei, welche Komponenten dabei helfen, Quellcode sicher und übersichtlich zu gestalten und wie diese konkret eingesetzt werden.

Das Training leitet damit ein, in welcher Ordnerstruktur Python-Projekte anzulegen sind und wie die erstellten Projekte mit pip installierbar gemacht werden. Anschließend werden 2 zentrale Bibliotheken mit unterschiedlichem Ansatz zum automatisierten Testen von Quellcode vorgestellt. Außerdem wird aufgezeigt, wie sie logging Mechanismen in Ihren Code einbauen. Mit der abschließenden Vorstellung des Frameworks Sphinx zur Dokumentation von Quellcodes, erhalten Sie einen weiteren Baustein dafür, um den Reifegrad Ihres Python Projektes zu erhöhen.

Wer sollte teilnehmen?

Softwareentwickler, Data Scientists, Data Engineers, Data Architects, Python-Entwickler, Python-Einsteiger mit grundlegenden Programmiererfahrungen, Python-Einsteiger mit grundlegenden Erfahrungen in Python

Lernziele

Python Projekte anlegen und Distributionen erstellen

Unit-Tests mit unittest und doctest durchführen

Logging von Quellcode mit der Bibliothek logging kennenlernen

Projektdokumentation mit Sphinx anlegen

Inhalte

  • Anforderungen von produktiven Python-Code
  • Objektorientierung im Python-Interpreter – Wie sieht produktiver Code aus?
  • Konvetioneller Code nach PEP-8 und dessen Bedeutung in Python
  • Python Projekte anlegen
  • Source- und Binary-Distributionen erstellen
  • Unittesting mit den Bibliotheken unittest und doctest durchführen
  • Aufzeichnen des Programmzustands mit logging
  • Dokumentationen mit Sphinx erstellen

Shortfacts

  • Empfohlene Dauer: 1 Tag
  • 2–10 Teilnehmer
  • Kurssprache: Deutsch oder Englisch
  • Preis: Der Tagessatz variiert zwischen Unternehmen und Forschhungseinrichtung. Nehmen Sie Kontakt auf!
  • Training am eigenen Laptop (Softwarevoraussetzungen und Installationsanleitung erhalten Sie im Vorfeld)

Inklusive

  • Teilnehmerzertifikat
  • Umfassende Schulungsunterlagen
  • Veranstaltungsevaluation + Report als PDF

Inhousetraining bei Data-Science-Architect

Prozess

  • Abstimmung der Inhalte
  • Terminfindung
  • Angebotserstellung
  • Online Evaluation der Teilnehmererwartung
  • Ankündigung mit Kursbeschreibung, Softwarevoraussetzung, Installationsanleitung, Timetable & optionaler Möglichkeit zur Vorbereitung
  • Bereitstellung der Kursmaterialien
  • Pro Tag 8×45 Min. Lerneinheiten
  • 30 Min. Open Space pro Tag im Anschluss an die Lerneinheiten
  • Verhältnis von Theorie, Praxis und Übungsphasen nach Absprache
  • Event Evaluation
  • PDF-Report mit Evaluations-Ergebnissen
  • Bereitstellung der im Training erstellten Materialien
  • Feedbackgespräch

Buchung

  • Der 3. Teilnehmer einer Anmeldung nimmt kostenfrei teil
  • Rechnungsstellung erfolgt nach der Veranstaltung